12.3 THE OIL-DROP EXPERIMENT

In 1906 Robert A. Millikan, then a lowly assistant professor at the University of Chicago,
devised an ingenious experiment that for the first time made it possible to measure the
charge on an individual droplet rather than on a cloud. Through Millikan’s experiment
it became possible to determine whether or not electricity in gases and chemical solutions
is built out of electrons and whether each electron has the same amount of charge.

Figure 12.5 Robert A Millikan’s original apparatus to measure the
electron charge. (Courtesy of the Archives, California Institute of
Technology.)
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Millikan’s original apparatus is shown in Fig. 12.5. Millikan used oil droplets for
the very same reason mankind spent 300 years improving clock oils: oil droplets scarcely
evaporate. Unlike water droplets, the mass of an oil droplet does not change with time.
Sprayed from an atomizer, the droplets would acquire a charge due to friction as they
passed through the nozzle. The charged droplets fell through a hole in one of two metal
plates, which Millikan connected to a room full of electric batteries. While between the
plates the droplets experience an electric force in addition to gravity, as shown in Fig.
12.6. By adjusting the voltage on the plates (and hence the electric field) certain droplets
could be suspended when the upward electric force equaled the weight of the droplet:

qE = mg.
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Figure 12.6 Schematic of Millikan’s oil-drop apparatus.

The electric field is downward but the force gE is upward on those droplets having
negative charge.

Through an optical device placed near the chamber, Millikan could watch individual
droplets. Because of their extremely small size, the droplets appeared as stars on a black
background. By increasing the voltage he could make droplets rise; those droplets with
greater charge rose more quickly. By reversing the voltage, he could make them fall
faster. In addition, he could change the charge on a droplet by sending a stream of ions
into the chamber. Millikan’s fascination with the acrobatic motion of droplets may have
lightened the long, solitary hours in the lab he spent squinting through the device and
recording hundreds of measurements.

What measurements did Millikan make that revealed the charge of the electron?
Using Newton’s second law, the motion of a droplet drifting upward between the plates
of Fig. 12.6 can be described by

dv

m;l? = gE — mg — 6mRnv. (12.5)
The electric force pushes the negatively charged droplets upward but the viscous force
is downward (opposite v) just like gravity.

By setting dv/dt = 0 in Eq. (12.5), we find the terminal velocity to be
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The characteristic time to reach this terminal velocity turns out to be the same as when
there is no electric field and is given by
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° = GuRn " (12.4)
A typical droplet approaches terminal velocity rapidly (in about 1073 s).

Using a stopwatch to time a droplet moving between marks etched in the optical
device, Millikan could measure the terminal velocity. As Eq. (12.6) indicates, the larger
the charge on a droplet, the greater its terminal velocity. By observing the motion of the
hundreds of droplets with different charges on them, Millikan uncovered the pattern he
expected: the charges were multiples of the smallest charge he measured.

Measuring v; and knowing E, 7, and g, you might think that Eq. (12.6) could be
solved for the charge ¢ on any droplet. But there are two other unknown quantities in
that equation: the droplet’s mass m and its radius R. These quantities, however, are not
independent, but are related by the density of oil p. The oil drop has volume g'n-R3, N
its mass is

m = 3mR%.

To be very precise, Millikan actually used p — o in place of p, where o is the density
of air. The reason for this is that the air provides an additional upward buoyant force on
a droplet which is equal to the weight of the air displaced by the droplet (this is known
as Archimedes’s law). The weight of air displaced is just the density of air times the
volume of the droplet. Accounting for this force is equivalent to saying that the weight
of the droplet is reduced to mg — m,g = (m — m,)g, where m, is the mass of air
displaced: m, = {wR’c. Since the density of air is about one-thousandth that of oil, the
correction is barely necessary. With this correction taken into consideration, Eq. (12.6)

becomes

gE — 3mR3(p — 0)g

= 2 127
U 6mR™ (12.7)
Millikan could not measure the radius R of a droplet directly because the drops are
too small to be seen clearly. But he had a clever way to find R indirectly. What he did
was first measure the terminal velocity of a droplet drifting upward in the electric field,
and then measure the terminal velocity of the same droplet falling without the electric
field on. With the field on, the terminal velocity is given by Eq. (12.7). When the droplet

is simply falling under the force of gravity, the terminal velocity is given by

mg
. 12.3
v2 6TRM ( )

which when corrected for the buoyant force of air (just as we did earlier) becomes
_ 2(p — 0)R%g

5 (12.8)
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In effect, this second measurement is used to find the size of the drop, R.
From (12.7) and (12.8) we find

vy + v —i
1 2 61TRT],

which, when solved for ¢, gives us

6mRm
E

But we can express R in terms of v, from Eq. (12.8) and we find, after some algebra,
that

q= (v + v2).

= oo IS 32 (v, + v,) (12.9)

q E"_—Zg(p—a)z 1 2)- .
By measuring v, and v, Millikan determined the charge of a droplet.

Shown in Fig. 12.7 is a page from Millikan’s research notebook, dated Friday, 15
March 1912. The column labels G and F refer to the times for a droplet to move between
calibration marks in gravity alone and in the electric field, respectively. Through hundreds
of such delicate measurements, Millikan, the patient experimentalist, discovered that the
charge on a droplet always comes out an integral multiple (i.e., 1, 2, 3, etc.) of the
smallest charge he found. Here was the first evidence that charges come in integral
multiples of a fundamental charge — the charge of the electron.

Figure 12.7 Page from Robert A. Millikan’s research notebook.
(Courtesy of the Archives, California Institute of Technology.)
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By reevaluating the coefficient of viscosity for air and reducing errors caused by
temperature variations and air currents, Millikan succeeded in determining the charge e
of the electron with an error of 0.1%. The value he published in 1913 was e = —(4.774
+ 0.005) electrostatic units, equivalent to ¢ = —(1.603 = 0.002) X 10~'° C, which
served physics for a generation and is within the experimental-error bounds he gave of
the most recent value. Millikan had observed the electron itself, and for his momentous
efforts he received the Nobel prize in 1923.

Today physicists are searching for fractionally charged particles called quarks. Based
on a symmetry classification for elementary particles, quarks are thought to be the building
blocks of particles that exist inside nuclei and carry charges of +§e and —1ie. Modifi-
cations of Millikan’s historic experiment are used by some of these quark hunters.

Questions
12. Fill in the steps leading to Eq. (12.9).

13. Suppose that in Millikan’s oil-drop experiment it were possible to replace all the
excess electrons on a given droplet with particles having twice the charge of an
electron and twice the mass. Which of the following statements is true?

(a) In order for the particles to be suspended between the capacitor plates, the
voltage would have to be doubled.

(b) With no electric field on, the drops would fall with a terminal velocity twice
that of droplets having electrons.

(c) The characteristic time to reach terminal velocity would be doubled.

14. Using Eq. (12.9) what percentage of error would be introduced if the correction
for the buoyant force of air were not included? To find the answer, compare the
charge obtained for a given v,, v,, etc., with and without o considered.

15. Suppose that the electric field was such as to create a force downward rather than
upward on a droplet. What then would replace Eq. (12.5)? What would be the
terminal velocity in this case?

16. Show that v(f) = fo(gE/m — g)(1 — e~ ") is a solution of Eq. (12.5), where ¢,
is given in Eq. (12.4). Prove that it is consistent with the terminal velocity given

in Eq. (12.6).

17. Why do you expect the characteristic time for a droplet to reach terminal velocity
to be the same with or without the electric field on?

18. Estimate 1, and v, in Millikan’s experiment. A typical drop had a radius R =
10510

12.4 A FINAL WORD

When Millikan made his measurements, alone in his laboratory, he had to have a notebook
like any scientist to record what he had done. Afterward, he would gather his results
together, write a scientific paper, and publish it for all the world to see. But his notebooks,
the raw data of his experiments, were for his own eyes only. Figure 12.7 shows a page
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from Millikan’s notebook. Before we criticize what we see, let’s remember what Millikan
was doing. He was measuring, for the first time ever, one of the fundamental constants
of nature. His task was to make his measurements in the most careful, dispassionate way
possible, then publish all of his results so that other scientists could judge whether he’d
done it properly. The page in Fig. 12.7 is dated 15 March 1912. Here he writes down
the temperature and barometric pressure, then he starts recording data, the times for a
droplet: F means in the field, and G means in gravity. Then he calculates the velocities,
uses logarithms to multiply them together (he didn’t have a hand calculator), and finally
he gets his result.

On one page he writes: ‘‘One of the best ever . . . almost exactly right.”” — What’s
going on here? How can it be right if he’s supposed to be measuring something he doesn’t
know? On another page he writes: ‘‘Beauty. Publish!”* One might expect him to publish
everything! On another page, the usual stuff, then: ‘4% too low — something wrong.”’
Not 4% too low but publish anyway, like a good scientist. Then something very revealing:
‘“. . . distance wrong.”’ He’s found an excuse for not publishing it. More pages: ‘‘Beauty,
one of the best,”” and so on for pages and pages.

Now, you shouldn’t conclude that Robert Millikan was a bad scientist. He wasn’t —
he was a great scientist, one of the best. What we see instead is something about how
real science is done in the real world. What Millikan was doing was not cheating. He
was applying scientific judgment. He had a pretty clear idea of what the result ought to
be — scientists almost always think they do when they set out to measure something. So,
when he got a result he didn’t like, he wouldn’t just ignore it — that would be cheating.
Instead, he would examine the experiments to see what went wrong. Now that seems
reasonable, but it’s actually a powerful bias to get the result he wants, because you can
be sure that when he got a result he liked, he didn’t search as hard to see what went
right. But experiments must be done in that way. Without that kind of judgment, the
journals would be full of mistakes, and we’d never get anywhere. So, then, what protects
us from being misled by somebody whose *‘judgment’’ leads to a wrong result? Mainly,
it’s the fact that someone else with a different prejudice can make another measurement.
Every scientist believes there is a real answer; it’s part of nature. That’s the belief that
keeps scientists rigorously honest, causing them to temper and guard against their own
prejudices. Dispassionate, unbiased observation is supposed to be the hallmark of the
scientific method. Don’t believe everything you read. Science is a difficult and subtle
business, and there is no method that assures success.



