Background

Education:

- Snow: AA/AS-Spanish and Chemistry
- USU: BS-Biochemistry (Research in Microbial Ecology)
- University of Iowa: PhD-Bacterial Pathogenics and Genetics
- University of Iowa: Postdoc-Molecular Pathophysiology in Otolaryngology

Bioinformatics: Coding for Life with DNA

 Fred Griffith (1928) and Oswald Avery (1943) used two different strains (Rough and Smooth) of *S. pneumoniae* to infect mice

Isolate bacteria from dead mouse and only finds Smooth bacteria. Why?

- Edwin Chargaff (1950) identified the chemical composition of DNA and concluded that contained a deoxyribose sugar, phosphate, and one of four bases: adenine, thymine, guanine, and cytosine.
 - The concentration of adenine always equaled thymine
 - The concentration of guanine always equaled cytosine

- Alfred Hershey and Martha Chase (1952)
 identified that DNA is the molecule of heredity
 - That which is passed on from species to species
- Rosalind Franklin (1952) used a technique called x-ray diffraction to study crystallized DNA.

 James Watson and Francis Crick (1953) used Franklin's X-ray image identified the structure of DNA as a double helix.

Encoderials Congress (1075) devialenced a view to

 Frederick Sanger (1975) developed a way to sequence (figure out the order of the bases).

- Gementech (1977-79) made the first genetically modified organism.
 Microorganisms produced insulin and human growth hormone.
- Kary B. Mullis (1985) published research on PCR (polymerase chain reaction) that is used to make millions of copies of tiny amounts of DNA quickly.

- 1990. NIH (National Institutes of Health)
 approved gene replacement therapy for an
 immunodeficiency disease.
- 1993. Calgene Inc. produce the first genetically modified crop. Tomatoes were given resistance to rotting.
- 1996. Dolly the sheep is cloned.
- 2003. Human genome sequenced (13 years)

What is DNA?

What Does DNA Look Like?

Each cell has about 2 Meters of DNA. Average human has $^{\sim}100$ trillion cells. That is enough DNA to go from the earth to the sun more than 400 times! DNA has a diameter of $2x10^{-9}$ m.

How can you fit the much DNA into each cell?

What Does DNA Look Like?

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

 23 chromosomes in duplicate
 (46 total in each cell)

© SPL/Science Source

What Does DNA Do?

- We have ~3 billion base pairs that comprise our set of 23 chromosomes
- DNA can undergo <u>transcription</u> (RNA), <u>translation</u> (Protein), replication (Mitosis), or Meiosis (only specialized cells, sperm and ova)

Transcription

• Transcription:

 Takes the DNA base pairs to RNA base pairs and then the non-functioning protein segments (introns) are removed

Difference Between DNA and RNA

- DNA
 - Double stranded
 - Contains Thymine
 - Deoxyribose
- RNA
 - Single stranded
 - Contains Uracil
 - Ribose

Transcription Detailed

Transcription Detailed

- Pre-messenger RNA (pre-mRNA)
 - Contains:
 - Introns- DNA sequences that don't code for proteins
 - Exons- DNA sequences that are protein building instructions
 - A Gene is consists of introns and exons.
- Introns are cut out.

Translation

Gene to Proteins

- DNA code
 - Triplets
- Transcription
 - DNA code is transcribed to RNA code as codons (introns cut out), final product mRNA (messenger)
- Translation
 - mRNA is transported to a ribosome
 - tRNA's with an anti-codon and associated Amino Acid recognize the codon of the mRNA and a polypeptide is made

Genetic Code

Second base

	Second base								
		U	С	Α	G				
	U	UUU Phenyl- UUC alanine (phe) UUA Leucine (leu)	UCU UCC UCA UCG	UAU Tyrosine (tyr) UAA Stop codon UAG Stop codon	UGU UGC Cysteine (cys) UGA Stop codon UGG Tryptophan (trp)	U C A G			
pase	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU Histidine (his) CAA Glutamine (gln)	CGU CGC CGA CGG	U C A G			
FILST	A	AUU AUC AUA Methionine (met) Start codon	ACU ACC ACA ACG	AAU AAC Asparagine (asn) AAA AAG Lysine (lys)	AGU AGC Serine (ser) AGA AGG Arginine (arg)	U C A G			
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC Aspartic acid (asp) GAA GAG Glutamic acid (glu)	GGU GGC GGA GGG	U C A G			

Third base

Genetic Code

- 64 codons
 - 3 code for stops and 61 code for amino acids
 - A codon never codes for more than one amino acid
 - Code is universal among all living organisms
 - Mutations can result in a non-functional protein or a different protein

Mutations

Frameshift: "the cat ate his dog" changes to "the cHa tat ehi sdo g"

Problems with Mutations

- May mess up the cell cycle
 - Stop
 - Increase replication!
 - Tumors
 - Benign
 - Cancerous
- Can look at your Genome and determine if you have had exposure to radiation, smoke, toxic chemicals by comparing the base pair ratios.

Genome

- Consists ~3 billion base pairs
- However, ~3% of these base pairs code for proteins (Exome). What is the other 97% doing?

 We have ~20,000 genes, but we have over 100,000 proteins (Proteome). How?

DNA Extraction

Articles

What did you think?

• Pros?

• Cons?

• Limitations?

Walking Data Storage Units

- 3 billion bp in 23 chromosomes
- Each cell has chromosomes duplicated (46)
- 6x10⁹ bp per cell
- A single byte can represent 4 DNA bp's
- 6x10⁹ bp x 1 byte/(4 bp's)= 1.5x10⁹ bytes
 (1.5 Gb per cell)
- 1.5 Gb x 100 trillion human cells = 150 Zettabytes!
- We also have 1 quadrillion bacterial cells in/on our body . . .

What are the Possibilities?

- Storage
- Can make your own databases of information
- Genetic puzzles
- Make proteins glow
- Spider silk in goats milk
- Personalized medicine
- •

Meiosis I

with a diploid chromosome number (2n) is at interphase. Before mitotic division begins, its DNA is replicated (all chromosomes are duplicated).

Crossing Over

Random Alignment

Possible combinations for just 3 chromosomes

Meiosis II

All Together-Meiosis