
PHYS 2105 Standing Waves in Pipes Name:

Object: (1) To observe standing waves in pipes, and (2) To measure the speed of sound.

Theory: When a wave is produced in a medium that has a well-defined boundary that wave will be
reflected at the boundary and create a situation in which waves will be traveling in both directions
through the same medium. If the dimensions of the medium fulfill certain conditions, the wave will
reflect back on itself so as to create a stationary or standing wave with nodes and anti-nodes.

In the case of a pipe that is open on both ends, if it is to resonate with an external sound source, the
fixed length L of the pipe must be equal to a whole number n of half-wavelengths of the incoming
sound wave:

L = nλn/2 n = 1, 2, 3, . . . (1)

where λn is the wavelength. Since λn = v/fn then L = nv/2fn.

Thus we see that a pipe has a series of “resonant frequencies” which can be found by solving the
above equation for fn:

fn =
v

2L
n n = 1, 2, 3, . . . (2)

The slope of a graph of fn vs. n is therefore v/2L. If we wish to determine the speed of sound in
air v, it should be the slope × 2L.

In the case of a pipe that is open on one end and closed on the other the length must be equal to
an odd number (2n− 1) of quarter wavelengths of the incoming sound wave for resonance to occur:

L = (2n− 1)λn/4 n = 1, 2, 3, . . . (3)

Again, since λn = v/fn then L = (2n− 1)v/4fn, which gives resonant frequencies of

fn =
(2n− 1)v

4L
n = 1, 2, 3, . . . . (4)

Put Equation 4 in y = mx+ b form and see that the speed of sound is still slope × 2L.

Sketch: Draw the resonance tube apparatus with labels to show the principles of operation. Also
draw a diagram of the standing wave patterns for the first two harmonics (n = 1, 2) of both the
pipe open on both ends and the pipe open on one end and closed on the other.



Procedure:

1. Connect the speaker to a variable frequency oscillator and the microphone to an oscilloscope.
Keep the amplitude low enough to avoid blowing the speaker (about 1/3 of maximum). Mea-
sure room temperature in kelvin and compute the expected value of v (in m/s) from v = 20

√
T .

2. Use Equations 2 and 4 to predict the resonant frequencies for the open-open and open-closed
cases.

3. Starting at a low frequency, slowly increase it until a resonance is observed (i.e., the amplitude
gets big). Continue in this manner, recording the frequency for each resonance (n = 1, 2, 3, . . .).

4. Plot the resonances on a graph of actual frequency vs. n. Compare the measured slope of the
best-fit straight line multiplied by 2L to the expected value for v. (See Equation 2.)

5. Now repeat the Steps 3 and 4 for the open-closed pipe. The best-fit straight line will not go
through the origin in this case. (See Equation 4; in fact, put it in the form y = mx+ b.)

6. Remove the plunger and set the oscillator to one of the resonance frequencies (say n = 4) for
the open-open pipe and move the microphone along the tube from node to node to measure
the wavelength directly. (You must skip one node to get a full wavelength.) Use v = λf to
compute the speed of sound measured in this manner and compare with the expected value.

Conclusions:


